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Abstract

Visualizing single-cell transcriptomics data in an informative way is a major challenge in biological data
analysis. Clustering of cells is a prominent analysis step and the results are usually visualized in a planar
embedding of the cells using methods like PCA, t-SNE, or UMAP. Given a cluster of cells, one frequently
searches for the genes highly expressed specifically in that cluster. At this point, visualization is usually
replaced by studying a list of differentially expressed genes. Association Plots are derived from
correspondence analysis and constitute a planar visualization of the features which characterize a given
cluster of observations. We have adapted Association Plots to address the challenge of visualizing
cluster-specific genes in large single-cell data sets. Our method is made available as a free R package
called APL. We demonstrate the application of APL and Association Plots to single-cell RNA-seq data
on two example data sets. First, we present how to delineate novel marker genes using Association Plots
with the example of Peripheral Blood Mononuclear Cell data. Second, we show how to apply Association
Plots for annotating cell clusters to known cell types using Association Plots and a predefined list of
marker genes. To do this we will use data from the human cell atlas of fetal gene expression. Results from
Association Plots will also be compared to methods for deriving differentially expressed genes, and we will
show the integration of APL with Gene Ontology Enrichment.

� 2022 The Author(s). Published by Elsevier Ltd.
Introduction

A key step in single-cell (sc) RNA-seq data
analysis is clustering of cells. Two goals motivate
clustering. Firstly, one is interested in the cell
types represented in the experiment, and,
secondly, one wants to determine which genes
characterize a particular cell cluster. While there
are many clustering algorithms readily available
today, exploration of marker genes which
characterize a cluster may still require tedious
sifting through long lists of program output. We will
here present a technique for determining and
visualizing cluster-specific genes for given clusters
of cells.
r(s). Published by Elsevier Ltd.
The terms ‘marker genes’ or ‘cluster-specific
genes’ refer to genes with expression profiles
characteristic for a given cell type or a cell cluster.
Due to biological variability of cell types as well as
current technological limitations there is no
catalogue of marker genes covering existing cell
types or cell identities, and our knowledge on
marker genes is limited. Often times, a cell type is
defined based on the expression of ‘historical’
marker genes, i.e. genes that have been found
over many years of research on a given cell type.
Yet, many more genes may be specific for a given
cell type. This might be the case for genes less
studied in the past, and thus, less present in the
literature than other, more frequently studied
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genes. As a consequence, focusing on marker
genes derived from the literature might lead to
overlooking of a heterogeneity within a cluster,
followed by a wrong biological interpretation of
clustering results.
To tackle this problem we present APL – an R

package which allows for identification and
visualization of cluster-specific genes from
transcriptomics data. Based on a scRNA-seq data
set and precomputed clusters of cells, APL
generates Association Plots, a planar
representation of gene-cluster associations.1 The
R package APL computes Association Plots for
single-cell transcriptomics data in such a way that
the user can interactively query the plots. APL can
also be integrated into single-cell data analysis
pipelines.
Association Plots provide for identification of

cluster-specific genes in single-cell data by
plotting genes in a two-dimensional coordinate
system. This is achieved by applying
correspondence analysis (CA), a method allowing
for a simultaneous embedding of both genes and
cells in one space, to single-cell data. The location
of genes in the CA space reveals information on
their expression across cells from the data. By
measuring distances in this space we are able to
represent associations between genes and a
cluster of cells in a two-dimensional coordinate
system, the so-called Association Plot. The
horizontal axis indicates how strongly the gene is
associated to a cluster and the farther to the right
it lies, the stronger is the association. The vertical
axis indicates whether other clusters also show
expression of this gene, such that the most
characteristic genes for a cluster can be found
near the x-axis far to the right.
Although the arrangement of the genes in the

Association Plot is derived from a high-
dimensional embedding, Association Plots are
always planar. Yet, they do not rely on simply
projecting data into a plane for reduction of data
dimension, and do not incur the information loss
associated, e.g., with projecting a principal
component analysis into two or three dimensions.
This is particularly important when working with
large, complex data, where projection into a few
dimensions tends to be associated with a large
information loss. Association Plots, thanks to their
dimension-independence, address this issue and
allow for accurate prediction of cluster-specific
genes even in high-dimensional data. This will be
further discussed in the Results Section.
Applying APL to single-cell data offers a wide

range of applications. First of all, it facilitates
exploration of high-dimensional data, and thereby
enables a better understanding of complex data
sets. Second, generating Association Plots for
selected clusters from the data allows for
identification of novel marker genes characterizing
different cell clusters and cell identities. Based on
2

this, Association Plots can also be applied for
cluster annotation purposes. This is effected by
comparing literature-derived marker genes for
different cell types with the marker genes derived
from the Association Plots generated for the given
cell clusters.
This paper is organized as follows. First, we will

explain the idea behind Association Plots and
present how to use them for visualization of
cluster-specific genes in high-dimensional single-
cell RNA-seq data. Next, we will demonstrate the
applications of Association Plots using two single-
cell RNA-seq data sets - the 3k Peripheral Blood
Mononuclear Cell (PBMC) data set from 10X
Genomics2,3 and the human cell atlas of fetal gene
expression.4Wewill present our newly developed R
package APL for generating Association Plots.
Finally, we will explore the relationships between
APL-derived cluster-specific genes and those
obtained by other computational approaches, and
provide examples of gene enrichment analysis in
the framework of Association Plots.
Results

Association Plots are defined based on the
geometry of correspondence analysis

Association Plots derive their capability of
depicting genes associated to a cluster of cells
from a feature of correspondence analysis (CA).
CA is a data embedding method resembling
Principal Component Analysis (PCA), albeit with a
few characteristic differences. CA embeds both
cells and genes in one real-valued space. While
for visualization purposes, points from this space
are traditionally projected down into two or three
dimensions, we refrain from doing so. Instead we
maintain a large number of dimensions of the
original data so as to reduce noise while
maintaining the defining information. By default we
retain the number of dimensions calculated using
the so-called elbow rule. See Methods for more
information on this and other methods for the
choice of dimension number. We call the resulting
space with points for cells and for genes CA-
space. In this space, CA places cells with similar
transcript profiles near each other, and, likewise,
arranges genes with similar distribution over cells
near each other. Most importantly for our
application, in CA-space a cluster of similar cells
defines a direction from the origin to that cluster,
and genes which are highly expressed in this
cluster but not elsewhere lie in that very direction.
In Figure 1(a) this direction is defined by the

vector from the origin to the centroid (grey dot with
orange border) of the cell cluster (orange dots).
Genes that are associated to the cluster (black
dots) lie in this direction in space. Note that this
would be the same geometry even in a space of
much higher dimension. The stronger an



Figure 1. Association Plots delineate cluster-specific genes. (a) In a high-dimensional CA space a cluster of
cells (orange dots) defines a direction, here represented by the orange line pointing from the origin to the centroid of
the cell cluster. The genes (black dots) associated to this cluster of cells are located close to this line along its
direction. (b) For the Association Plot we only use the length from the origin to the genes’s projection onto the orange
line (d*cos(c)) as the first coordinate of the gene in the Association Plot. The length of the perpendicular distance from
the gene to the line (d*sin(c)) is the second coordinate. Thus, the x-axis of the Association Plot corresponds to the line
pointing towards the cluster centroid shown at the end of the vector.
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association between a gene and a cell cluster, the
farther out towards this cluster a gene will be
located. Therefore, the length of the orthogonal
projection of the gene-point onto the vector
towards the centroid is an indicator of the strength
of the association. As shown in Figure 1(b), we
use this length (d � cosðcÞ) as the x-axis for the
gene in the Association Plot. The perpendicular
distance from a gene to this vector (d � sinðcÞ)
constitutes the y-axis of the gene in the
Association Plot. This distance will be short when
the gene is very specific for the cluster. When the
gene is also expressed in other clusters, then it
will be farther away from the direction to the
centroid, and therefore have a larger y-coordinate
in the Association Plot. The Association Plot for a
given cell cluster depicts all genes with these two
coordinates in a two-dimensional space. Thus,
despite being planar, Association Plots are
independent of the dimension of the CA-space
and they capture information from the high-
dimensional space without discarding dimensions.
A mathematical description of Association Plots is
given in (Gralinska and Vingron, 2021).1
Visualizing and scoring cluster-specific genes

Association Plots are primarily a visualization tool
for genes that are associated to a cluster of cells.
Genes positively associated with the selected
cluster of cells will be located in the right bottom
part of the plot. This is due to the fact mentioned
above that in the CA space such genes align with
the direction towards this cluster and are located
in close proximity to the cluster centroid. On the
other hand, genes which do not show any
association with the cluster will be located close to
the Association Plot’s origin. In the CA space such
3

genes do not align with the direction towards the
selected cluster and are located closer towards
other clusters.
To facilitate the interpretation of Association

Plots, we also implemented a scoring system
which aims at ranking genes according to their
cluster-specificity. To this end, we use random
permutation of the data to determine an angle a in
the Association Plot, above which 99% of genes
might lie due to chance. The score Sa

1 for a gene
at coordinates ðx ; yÞ in the Association Plot is then
computed according to the formula:

Saðx ; yÞ ¼ x � y

tana
:

Sa will be high for genes far away from the origin and
near the x-axis of the Association Plot. Sa will be
constant along parallel level lines of degree a in the
Association Plot. The higher Sa, the higher the cluster-
specificity of a gene. Figure 2(a), e.g., displays genes
in the Association Plot colored according to the Sa level.

Association Plots for the 3k PBMC data

To demonstrate how to use Association Plots for
studying gene-cluster associations and for
identification of novel marker genes characterizing
a cell cluster from single-cell data, we applied our
method to the 3k Peripheral Blood Mononuclear
Cell (PBMC) single-cell RNA-seq data.2,3 PBMC
data was generated by 10X Genomics and allows
for studying the immune populations within PBMCs
from a healthy donor.
When applying Association Plots to a single-cell

transcriptomics data, clustering of cells will
typically be part of data pre-processing. For this
we followed the vignette from the Seurat package5

(more details in the Methods Section). Using Seurat
the clusters were annotated to different cell types



Figure 2. Cluster-specific genes from 3 k PBMC data. (a) Association Plot generated for the B cell cluster. Each
circle represents one gene from the input data. Genes with the positive Sa score are highlighted in color according to
the color map given. (b) Comparison of the expression levels of five example genes from (a) across nine cell types.
(c) Association Plot generated for the CD14+ monocyte cluster. (d) Comparison of the expression levels of five
example genes from (c) across nine cell types. (e) Average expression levels of 50 candidate marker genes per cell
type, identified using the Association Plots, across all nine cell types.
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based on the expression of canonical marker genes
for immune cells (Supplementary Figure 1).5 This
annotation allows us to address clusters by their
cell-type rather than by a number. The following cell
types were identified: B cells, naive CD4+ T cells,
memory CD4+ T cells, CD8+ T cells, FCGR3A+
monocytes, natural killer (NK) cells, CD14+ mono-
cytes, dendritic cells (DC), and platelets.
4

We also generated Association Plots for each of
the clusters of cells using the first 223 CA
dimensions. Figure 2 presents two example
Association Plots for the B cell- (Figure 2(a)) and
CD14+ monocyte clusters (Figure 2(c)). Genes
with the positive Sa score are highlighted in color
according to the color map given. To illustrate the
linkage between Sa score and gene expression
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patterns across cell clusters we focus on 10
example genes with different Sa values. In
Figure 2(b) we present the expression levels of
five random genes from the B cell cluster
Association Plot across nine clusters for
comparison: RGS2, SNX2, HVCN1, CD79B, and
CD79A. As shown in the violin plots, with
increasing Sa score the over-expression of a
given gene in the B cell cluster gets more
pronounced. For instance, while in the case of
CD79A, a gene with the highest Sa score equal
2.18, we observe a clear over-expression in the B
cell cluster, in the case of SNX2, a gene with the
Sa score of 0.51, the over-expression signal in the
B cell cluster is almost not visible. On the other
hand, for RGS2, a gene with a negative Sa score
located in the left bottom part of the Association
Plot, we observe the over-expression in three
other cell clusters and not in the B cell cluster.
Figure 2(d) demonstrates analogous

observations as in Figure 2(b), this time for five
genes from the CD14+ monocyte Association
Plot: CD7, ASAH1, CTSB, BLVRB, and FOLR3.
For CD7, a gene located in the bottom left part of
the Association Plot, no over-expression signal in
the CD14+ monocyte cluster is observed. Instead,
it is over-expressed in four other cell clusters:
naive CD4+ T, memory CD+, CD8+ T, and NK
cells. On the other hand, a gene with the highest
Sa value of 1.93, FOLR3, shows a strong over-
expression in the CD14+ monocyte cluster. This,
together with the three remaining plots generated
for ASAH1, CTSB and BLVRB confirms the link
between Sa score and gene expression patterns
across cell clusters.
Next, we employ Gene Set Enrichment Analysis

(GSEA)6–8 to show that genes with high Sa values
are associated to the cell type for which the respec-
tive Association Plot was computed.GSEAwas per-
formed on the 100 genes with the highestSa values.
The results for two cell clusters, B cell- and CD14+
monocytes cluster, are presented in Table 1 and
Table 2, respectively. For the B cell cluster nine out
of the top 10 enriched gene sets are linked to the B
cell population. For the CD14+ monocyte cluster
four out of the top 10 enriched gene sets are directly
related to the monocyte population. Two further
gene sets are related to the myeloid cell population,
which reflects the monocyte-specificity of the gene
markers from the CD14+ monocyte cluster. Thus,
the genes associated to a cell type based on high
Sa are indeed characteristic for the respective cell
types.
Figure 2(e) provides an overview of uniqueness

vs sharing of cluster-specific genes for the cell-
type clusters in the PBMC data. From each of the
nine Association Plots we extracted the 50 genes
with the highest Sa score. Each of the nine
rectangles on the main diagonal of the matrix
represents those 50 genes from the respective
Association Plot each as a little heatmap: The
5

genes’ within-cluster average expression strength
is encoded in color, with genes sorted by
expression from left to right. The rectangles in the
same column contain the genes from the main,
diagonal rectangle in the same order, and with the
color commensurate to the average expression
level in the other cluster.
While marker genes obtained from well-

separated clusters such as B cells, platelet or
dendritic cells show a strong over-expression in
only one cluster, the identified marker genes from
clusters located in close proximity to another
cluster in correspondence analysis space are also
partially up-regulated in the neighboring clusters.
This is observed for natural killer cell- and CD8+ T
cell cluster, as well as for the CD8+ T cell cluster,
the memory CD4+ T cell cluster, and the naive
CD4+ T cell cluster. Cell clusters located in close
proximity to each other share similar gene
expression profiles, which results in a low number
of genes characteristic for only one of these
clusters.
Association Plots aid in identification of novel
marker genes

When a set of established marker genes for a cell
type is given, an Association Plot for a cell cluster
corresponding to that cell type may serve to
support the identification of novel marker genes.
This is an important task in the context of less well
characterized cell types. We demonstrate how to
proceed on the example of the Association Plot
generated for the B cell cluster from the 3k PBMC
data.
Figure 3(a) presents the Association Plot for the B

cell cluster, with 242 B-cell enriched genes
highlighted using grey filling. This set of genes
was obtained from the Human Blood Atlas,9 a col-
lection of information on the human protein-coding
genes across distinct human blood cell types. In
the Human Blood Atlas all genes with at least four
times higher normalized expression values in B
cells than in any other cell type are qualified as B-
cell enriched genes.10 In the Association Plot these
genes obtained statistically higher Sa scores than
the remaining genes (Wilcoxon test, p-value
1.505e-35). This is also visible in the Association
Plot with the majority of the B-cell enriched genes
located within the area of positive Sa values, which
confirms a substantial overlap between the Associ-
ation Plot results and the marker gene set from the
Human Blood Atlas. In addition to this, single mar-
ker genes are located outside of the positive Sa
area. This might be caused by the differences in
data sets used for computing Association Plots
and for extracting cell type enriched genes in the
Human Blood Atlas.
Novel marker genes will be located among genes

with high Sa scores, and which at the same time are
not annotated yet as marker genes for a given cell



Table 1 GSEA results of 100 top genes from B cells.

Gene Set Name # Genes in

Gene Set (K)

Description # Genes in

Overlap (k)

k/K p-value FDR q-value

HAY_BONE_MARROW_

FOLLICULAR_B_CELL

142 – 48 0.338 1.01E�95 2.07E�91

GSE10325_CD4_TCELL_ VS_BCELL_DN 194 Genes down-regulated in comparison of healthy CD4

[GeneID = 920] T cells versus healthy CD19 [GeneID = 920] B

cells.

51 0.2629 1.33E�95 2.07E�91

GSE10325_LUPUS_CD4_

TCELL_VS_LUPUS_ BCELL_DN

195 Genes down-regulated in comparison of systemic lupus

erythematosus CD4 [GeneID = 920] T cells versus systemic

lupus erythematosus B cells.

47 0.241 1.65E�85 1.71E�81

GSE4984_UNTREATED_

VS_GALECTIN1_ TREATED_DC_DN

191 Genes down-regulated in monocyte-derived dendritic cells:

control versus treated with LGALS1 [GeneID = 3956].

40 0.2094 2.63E�69 2.04E�65

GSE29618_BCELL_VS_

MONOCYTE_DAY7_FLU_

VACCINE_UP

195 Genes up-regulated in comparison of B cells from influenza

vaccinee at day 7 versus monocytes from influenza vaccinee at

day 7.

39 0.2 1.27E�66 7.92E�63

GSE29618_BCELL_VS_ MONOCYTE_UP 194 Genes up-regulated in comparison of B cells versus monocytes. 38 0.1959 1.88E�64 9.75E�61

GSE29618_BCELL_VS_

MDC_DAY7_FLU_ VACCINE_UP

192 Genes up-regulated in comparison of B cells from influenza

vaccinee at day 7 post-vaccination versus myeloid dendritic cells

(mDC) at day 7 post-vaccination.

37 0.1927 2.16E�62 9.6E�59

GSE10325_BCELL_VS_ MYELOID_UP 196 Genes up-regulated in comparison of healthy B cells versus

healthy myeloid cells.

35 0.1786 1.28E�57 5E�54

GSE3982_MEMORY_CD4_

TCELL_VS_BCELL_DN

197 Genes down-regulated in comparison of memory CD4

[GeneID = 920] T cells versus B cells.

34 0.1726 2.3E�55 7.95E�52

GSE22886_TCELL_VS_

BCELL_NAIVE_DN

198 Genes down-regulated in comparison of naive CD4

[GeneID = 920] CD8 T cells versus naive B cells.

34 0.1717 2.77E�55 8.63E�52
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Table 2 GSEA results of 100 top genes from CD14+ monocytes.

Gene Set Name # Genes in

Gene Set (K)

Description # Genes in

Overlap (k)

k/K p-value FDR q-value

HAY_BONE_MARROW_ NEUTROPHIL 450 – 56 0.1244 3.91E�85 1.22E�80

GSE11057_PBMC_VS_

MEM_CD4_TCELL_UP

197 Genes up-regulated in comparison of peripheral mononuclear

blood cells (PBMC) versus memory T cells.

30 0.1523 1.38E�46 2.15E�42

GSE29618_MONOCYTE_

VS_MDC_DAY7_FLU_ VACCINE_UP

200 Genes up-regulated in comparison of monocytes from

influenza vaccinee at day 7 post-vaccination versus myeloid

dendritic cells at day 7 post-vaccination.

30 0.15 2.24E�46 2.33E�42

GSE29618_MONOCYTE_ VS_PDC_UP 199 Genes up-regulated in comparison of monocytes versus

plasmacytoid dendritic cells (pDC).

29 0.1457 2.06E�44 1.25E�40

GSE29618_MONOCYTE_ VS_MDC_UP 200 Genes up-regulated in comparison of monocytes versus

myeloid dendritic cells (mDC).

29 0.145 2.41E�44 1.25E�40

GSE29618_MONOCYTE_

VS_PDC_DAY7_FLU_ VACCINE_UP

200 Genes up-regulated in comparison of monocytes from

influenza vaccinee at day 7 post-vaccination versus

plasmacytoid dendritic cells (mDC) at day 7 post-vaccination.

29 0.145 2.41E�44 1.25E�40

GSE10325_LUPUS_CD4_

TCELL_VS_LUPUS_ MYELOID_DN

200 Genes down-regulated in comparison of systemic lupus

erythematosus CD4 [GeneID = 920] T cells versus systemic

lupus erythematosus myeloid cells.

27 0.135 2.36E�40 9.33E�37

GSE6269_HEALTHY_VS_

STAPH_PNEUMO_INF_ PBMC_DN

170 Genes down-regulated in comparison of peripheral blood

mononuclear cells (PBMC) from healthy donors versus PBMC

from patients with acute S. pneumoniae infection.

26 0.1529 2.4E�40 9.33E�37

DURANTE_ADULT_ OLFACTORY_

NEUROEPITHELIUM_ DENDRITIC_CELLS

117 – 21 0.1795 3.55E�34 1.23E�30

GSE10325_BCELL_VS_ MYELOID_DN 200 Genes down-regulated in comparison of healthy B cells

versus healthy myeloid cells.

23 0.115 1.13E�32 3.2E�29
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Figure 3. Identification of novel marker genes using Association Plots. (a) Association Plot for B cell cluster
from the 3k PBMC data. Genes known to be enriched in B cells according to the Human Blood Atlas are highlighted in
grey. (b) Cell clusters in 3k PBMC data. (c–d) Expression levels of example genes enriched in B cells according to the
Human Blood Atlas with (c) negative and (d) positive Sa score. (e) Expression levels of B-cell specific genes detected
using the Association Plot, which are not listed among B-cell enriched genes according to the Human Blood Atlas.
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type. In the Association Plot generated for the B cell
cluster we highlighted five example genes which
can be considered as marker gene candidates:
LINC00926, TCL1A, TSPAN13, GNG7, and CD40
(Figure 3(a)). As presented in Figure 3(e), each of
these genes is over-expressed in the B cell
cluster. For comparison, in the generated
Association Plot we also highlighted 10 further
8

example genes listed among the B-cell enriched
genes in the Human Blood Atlas. As expected, the
first five genes (FBXO10, KCNH8, PPP1R37,
NPIPB6, CLECL1) located outside of the positive
Sa area do not show any over-expression signal in
the B cell cluster (Figure 3(c)), while the further
five genes (VPREB3, FCRLA, BLK, CD79B,
CD22) are characterized by positive Sa values
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and show over-expression in the B cell cluster
(Figure 3(d)). Moreover, their expression profiles
resemble the profiles of the newly detected
candidate marker genes.
The first detected gene is LINC00926, a long non-

coding RNA over-represented in the B cell cluster.
Even though LINC00926 has not been well-
characterized yet, its abnormal expression was
observed in several cancer types.11 For instance,
the up-regulation of LINC00926 in B cells in lung
adenocarcinoma patients was observed to improve
their overall survival.12 Due to this, LINC00926 was
suggested to be a B-cell specific marker gene pro-
tecting against lung adenocarcinoma. Moreover, it
was also observed to suppress breast cancer
growth by down-regulating the expression of phos-
phoglycerate kinase 1 (PGK1).13 LINC00926 was
also described in the context of acute myeloid
leukemia14 andHodgkin lymphoma.15 To our knowl-
edge, there is only one publication available which
describes LINC00926 as a B cell marker,16 together
with another gene, TCL1A, the secondmarker gene
candidate identified using the Association Plot.
TCL1A, T-cell leukemia/lymphoma protein 1A, is

a gene involved in the regulation and
differentiation of B cells. Over-expression of this
gene is linked to the T- and B-cell lymphomas.17,18

Although TCL1A is not present in the B-cell
enriched gene list from the Human Blood Atlas, it
is classified there as a “cell lineage group enriched
gene”, and thus, its up-regulation is simultaneously
observed in B cells and plasmacytoid DCs. How-
ever, in the 3k PBMC data TCL1A is up-regulated
only in some cells from the DC cluster and, thus, it
still scores high in the Association Plot for B cells.
Further example genes from the Association Plot

showing B cell cluster specificity are GNG7, CD40,
or TSPAN13. Similar to TCL1A, GNG7 is classified
as a “cell lineage group enriched gene” in the
Human Blood Atlas and its up-regulation is
observed both in B cells and plasmacytoid DCs.
However, according to the 3k PBMC data this
gene is partially up-regulated only in the B cells.
The fourth detected gene, CD40, according to the
Human Blood Atlas is only enhanced in the B
cells, while in the 3k PBMC data it is visibly over-
expressed in the B cell cluster. TSPAN13, the last
gene identified from the Association Plot, is
classified as enhanced both in the naive B cells
and plasmacytoid DCs according to the Human
Blood Atlas, while in the 3k PBMC data it is up-
regulated only in the B cell cluster.
Association Plots aid in annotating cell
clusters to known cell identities

Another typical task in single-cell data analysis is
the annotation of clusters of cells to known cell
types. We proceed to demonstrate this on the
example of stomach single-cell data from the
human cell atlas of fetal gene expression.4
9

Among the existing methods for cluster
annotation one can distinguish two main types.
The first group encompasses methods that rely on
a reference database. In this case expression
profiles of cells from a given cluster are compared
against expression profiles of various cell types
from a reference database. Alternatively, cluster
annotation can be conducted using a literature-
derived list of marker genes for various cell types,
where the expression analysis of such markers
allows then for matching a given cell cluster to a
cell type. We proceed according to this second
paradigm and work with given lists of marker
genes for different cell types.
The single-cell data from the stomach comes

from the human cell atlas of fetal gene expression
and according to the subcluster analysis
conducted by the authors of the original study it
consists of 16 subclusters (see Methods
Section “Subclustering analysis” in (Junyue et al.,
2020)4). For each subcluster, we generated its
Association Plots, yielding 16 Association Plots
depicted in Figure 4(a)–(p). The plots were gener-
ated using the first 4047 CA dimensions, as deter-
mined by the elbow rule. To annotate the
generated Association Plots to 16 cell types we
use a set of within-tissue marker genes from stom-
ach provided by the authors of the original study.
Altogether, among the sets of within-tissue marker
genes reported by them, there were 64 marker
genes with subsets characteristic of individual cell
types from stomach. Thus, in each generated plot
we highlighted the complete set of 64 marker genes
for all 16 stomach cell types, leading to the images
of Figure 4(a)–(p).
In each of the generated plots the majority of the

highlighted genes are located on the left side of the
plot, which indicates no association between them
and the depicted cell subcluster. However, in each
plot a few genes are located on the right hand
side. These are the marker genes for that
respective subcluster. Therefore, in the last step
of the analysis we focused only on these genes
and used them to match each Association Plot to
one of the 16 stomach cell types based on the
provided list of within-tissue marker genes. This
allows to easily assign the identity of all 16
stomach clusters from the data as shown in a
UMAP (Figure 5). To illustrate the results, in
Figure 4(a)–(p) we show all the 16 Association
Plots together with their real (as given by the
original authors) cell type, and the corresponding
marker genes for a cell type highlighted in color.
We have used this example to demonstrate how

easy it is to obtain cell-type assignments based on
Association Plots. There is no need to search for
the right set of marker genes for a cell cluster, but
mapping the union of all marker genes into the
Association Plots yields an easy to interpret
visualization from which the identity of the cluster
can be inferred. Our results were in agreement with



E. Gralinska, C. Kohl, B. Sokhandan Fadakar, et al. Journal of Molecular Biology 434 (2022) 167525
the cluster information from the original data, which
demonstrates that Association Plots can be applied
for annotating the cell clusters to known cell types
based on the predefined list of marker genes.
R package

APL is a freely available R package for
identification of cluster-specific genes using
Association Plots. The package was developed in
a way that allows for applying it to single-cell
transcriptomics data and extracting a list of genes
specific for any selected cell cluster.
When working with single-cell transcriptomics

data we recommend providing the input data as a
Seurat or SingleCellExperiment object.
Figure 4. Annotation of cell clusters from the human ce
genes. (a–p) Association Plots for each of the 16 stomach
Marker genes specific for a given cell type are highlighted in
(Figure 5).
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Alternatively, the input data can be provided in
form of a normalized count matrix, with rows
representing genes and the columns representing
cells. In addition to this, APL can also be applied
to any type of the data represented in form of a
matrix with non-negative entries. To run the
analysis, the input data should be specified as the
obj parameter in the function cacomp.
Association Plots are computed using a function

apl_coords. To run this function the user needs to
specify the group parameter indicating for which
cells from the input data the Association Plot
should be computed. Therefore, the user should
use the indices or names of cells belonging to a
cluster of interest, e.g. according to the clustering
information provided beforehand. We additionally
ll atlas of fetal gene expression using known marker
subclusters with a set of 64 within-tissue marker genes.
color. The colors correspond to the UMAP color scheme



Fig 4. (continued)

Figure 5. UMAP visualization of stomach cells from human cell atlas of fetal gene expression. The cells were
annotated to cell types using Association Plots from Figure 4 and the provided list of within-tissue marker genes for
each of the 16 cell types. The plot was generated using the UMAP coordinates of stomach cells obtained from the
processed data from the original publication.4
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implemented a wrapper function runAPL, which
automates the above-described steps. Finally, to
display the computed Association Plot a function
apl should be called.
Sa scores for ranking genes are computed with

the function apl_score. The Sa scores are then
stored in the APL_scoreattribute of a ca object.
11
To investigate the expression of a gene that was
identified as interesting in an Association Plot
across the clusters of the single-cell
transcriptomics data, external plotting functions
such as VlnPlot, for generating a violin plot, and
FeaturePlot, for generating a feature plot, from the
Seurat package can be used.
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By default the computation of Association Plots is
done using 5,000 genes with the highest variance
across cells. This number can be changed using
the parameter top in the functions cacomp or
runAPL. The wrapper function runAPL uses by
default the number of CA dimensions computed
using the elbow rule (see below). When using the
cacomp function the user should specify the
number of CA dimensions using the parameter
dims. We implemented three methods for
selecting a dimension number: elbow rule
(elbow_rule), 80% rule (maj_inertia), and
average rule (avg_inertia). The user can also
estimate the number of dimension using a scree
plot, which can be generated using the function
scree_plot. For more details see Methods
Section.
Association Plots are computed based on the

geometry of correspondence analysis. Therefore it
is possible to plot the two- or three-dimensional
input data projection of the correspondence
analysis space. This is done by the functions
ca_biplot and ca_3Dplot, respectively.
The APL package can be integrated into existing

pipelines, and Association Plot results can be used
as an input for functions from other packages. For
instance, to conduct GO enrichment analysis of
cluster-specific genes identified using Association
Plots we developed a function apl_topGO, which
allows for conducting a GO enrichment analysis
using the topGO package. By default the function
is applied to the genes from an Association Plot
with Sa score above a defined threshold.
Further information about the package,

installation, usage details and examples can be
found in the Methods Section and the vignette
provided with the package. The package is
available from https://github.com/VingronLab/APL.
Comparison to differential expression testing
tools

As a tool for visualizing genes that are
characteristic for a cell cluster, Association Plots
can also be seen as a way of determining genes
that are differentially expressed between the cells
in the cluster vs all other cells. Thus, we need to
answer the question how comparable are the
results obtained using Association Plots to the
results from commonly used differential
expression testing tools.
To address this question we need to choose a set

of differential expression (DE) tools for single-cell
RNA-seq data to include in a comparison. There is
no consensus in the community on which of the
existing differential expression testing methods is
the best one for single-cell RNA-seq data.
Comparative studies of various existing tools
revealed an unsatisfying agreement among
them.19,20 Even though there also exist tools devel-
oped especially for single-cell RNA-seq data, it was
12
recently suggested that the standard tools for bulk
RNA-seq data do not perform worse than the spe-
cialized single-cell RNA-seq tools.19 Therefore, we
decided to follow recent recommendations21 and
focused on two differential expression testing tools
for bulk RNA-seq data, DESeq222 and edgeR,23,24

combined with ZINB-WaVE weight estimation
method.25 In addition to those we include in the
comparison the FindAllMarkers function from Seu-
rat,5 which is specifically designed for delineating
marker genes from single-cell data.
To investigate the agreement among results

obtained with DESeq2, edgeR, Seurat, and
Association Plots, we applied them to the 3k
PBMC data. First of all, sets of 1000 most up-
regulated or cell-type specific genes were
extracted for each cluster and tool (see Methods
for details), and the overlaps between them were
investigated. For Association Plots the top 1000
genes refer to the ranking by Sa score. Figure 6
shows the overlap between the results of the four
approaches for all nine cell types of the 3k PBMC
data. For all cell types, results obtained using
Association Plots agree the most with Seurat
results. The overall lighter color of the matrix for
dendritic cells (DC) indicates that in this cell type
the different methods agree the least. In DC,
Association Plots share 547 out of 1000 genes
with Seurat, whereas in natural killer cells (NK) 833
genes are shared between these two methods.
DESeq2 and edgeR, in turn agree more with each
other than with either Seurat or Association Plots,
as can be seen for eight out of nine cell types.
We proceed to demonstrate how mapping the

sets of differentially expressed genes into an
Association Plot allows to visualize and study the
differences or agreements. We focus on the case
of the dendritic cells since there the agreement
between methods was smallest. Figure 7 shows
three times the same Association Plot for the DC
cluster, overlaid respectively with the 250 most
differentially expressed genes from Seurat,
edgeR, and DESeq2. The genes are chosen
according to thresholds selected appropriately for
the individual method (see Methods).
Comparison of the highlighted differential gene

sets in the three subfigures shows general
agreement with interesting particular differences.
For example, Seurat classifies a few genes very
far to the right as differential. Those genes are
characterized by high expression of the respective
gene albeit only in a subset of cells in the cluster.
As a consequence, a method like DESeq2 may
assign a high fold-change but a non-significant p-
value. For most of the genes that one would judge
as differential from the visual impression provided
by the Association Plot, there is at least one of the
other methods that would also identify that gene.
Thus, the Association Plot serves well as a
summary of the relevant genes to be explored
further. The APL package allows for clicking on

https://github.com/VingronLab/APL


Figure 6. Agreement among the results obtained with DESeq2, edgeR, Seurat, and Association Plots for
the 3 k PBMC data. For each cell cluster and tool 1000 most up-regulated or cell-type specific genes were extracted.
The overlaps between them are shown in the heatmaps. AP, Association Plot.
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dots in the Association Plot to learn about the
identity of the gene.

Gene ontology enrichment analysis

To interpret the biological meaning of a cluster-
specific gene set identified using Association Plots
the APL package allows for conducting and
visualizing Gene Ontology (GO) enrichment
analysis using the R package topGO.26 We demon-
strate this on the example of the lymphoid cell clus-
ter from stomach, as obtained from the human cell
atlas of fetal gene expression.
From the Association Plot generated for these

lymphoid cells we extracted genes with Sa values
above 1. This resulted in a set of 358 genes which
we subsequently subjected to GO enrichment
analysis (see Methods). From the result, the 10
most significantly enriched GO terms are shown in
Figure 8. A prominent role of GO terms related to
T cells and immunity is apparent in the table. The
majority of lymphoid cells in stomach are T cells,4

which is in line with most of the terms being related
to T cells.
These results can be made more intuitive by

mapping the information into the Association Plot.
Genes belonging to a given GO term can be
13
highlighted in the Association Plot. As an
example, in the Association Plot for lymphoid cells
(Figure 9) we highlighted all genes annotated to a
GO term ‘GO:0050853 B cell receptor signaling
pathway’. Most of these genes are significantly
enriched (located in rainbow area). Other genes,
which are not in the region where Sa > 1 are
visibly still close to this region. In particular, one
can recognize those genes of a GO category
which are strongly associated to the cluster as
opposed to others which are apparently shared
with other clusters or are lowly expressed in the
cluster.
Although in the presented example we

demonstrated the results for lymphoid cells
obtained using the topGO package, the results
from Association Plots can be smoothly integrated
with various R packages.
Discussion

We have presented the use of Association Plots
for visualization and analysis of single cell
transcriptomics data. This type of data set tends
to be particularly large such that visualization and,
in particular, interactive querying of the data is



Figure 7. Association Plot for the DC cluster from 3k PBMC data, overlaid with 250 most differentially expressed
genes from (a) Seurat, (b) edgeR, and (c) DESeq2.

Figure 8. GO enrichment analysis of lymphoid cells from the stomach cluster obtained from human cell
atlas of fetal gene expression. The figure presents our visualization of the topGO results, implemented in the APL
package. Only 10 most significantly enriched GO terms are shown.
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challenging. The question we address is the
identification of genes that are associated to
individual clusters in the data. We assume that the
clustering is given, although in other ongoing work
we focus on the clustering problem.
We developed an R package APL that is freely

available on GitHub. It computes and displays
Association Plots and allows for querying various
aspects of the data. The plots generated by APL
are interactive and allow for investigating the
identity of each gene by moving the mouse cursor
14
over a given point in the plot. Moreover, the plots
can also be dragged and zoomed, which
facilitates the investigation of genes of interest.
Thanks to this, using APL, one can extract sets of
marker genes for a given cell cluster, map marker
genes into an Association Plot for the purpose of
cell type annotation, or visualize gene set
enrichment in a cell cluster.
We applied Association Plots to two example

single-cell data sets: The 3k PBMC data set
containing information on gene expression in



Figure 9. Location of genes annotated to the GO term ‘GO:0050853 B cell receptor signaling pathway’ in the
Association Plot for the lymphoid cells. Genes belonging to this GO category are marked using black stars.
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peripheral blood mononuclear cells, and the human
cell atlas of fetal gene expression containing
information on in vivo gene expression across
diverse organs and cell types. The clustering we
relied on came from the Louvain algorithm in the
Seurat package.
Association Plots can depict the association of

genes to a cluster in a planar coordinate system,
independent of the original dimension of the data.
Unlike with, e.g., PCA, this is not achieved by
simple projection. Given the complexity of single
cell data, projection into the plane would lead to a
huge loss of information. Rather, the two
dimensions of the planar Association Plot
represent characteristic measures for the
association between a gene and a cluster centroid
as derived from high dimensional correspondence
analysis space. Thus, it constitutes a non-linear
mapping of the high-dimensional image into a
plane, while preserving the gene-cluster
association features.
From the practice of projecting data along

principal coordinates into lower dimensions we
borrow only the noise reduction aspect when
defining CA space. Given very large data that
reside in thousands of dimensions, after singular
value decomposition typically many dimensions
will essentially be noise. These are associated to
small singular values. Thus we employ standard
methods, like the elbow method, for estimating the
number of dimensions to keep in our
representation of the data in CA space. This will
typically be way more dimensions than three, but
also way less than the full dimensionality of the
data. A positive side effect of reducing the number
of dimensions in this way is that computations
become faster than when done on the original
data. In the APL package we implemented three
alternative methods for computing a number of
dimensions.
A marker gene is meant to distinguish a particular

cell type from other cell types. In the context of
single cell transcriptomics, a marker gene can
highlight one cluster over the other clusters in the
data set. The marker genes delineated by an
15
Association Plot thus need to be understood as
‘relative’ marker genes depending on the given
data set, and the composition of the set of marker
genes may vary depending on the cell identities
present in the data. Clearly, this is no different
from other commonly-used tools for differential
expression testing, and thus, searching for novel
marker genes should be always accompanied by
the appropriate experimental design.
Conclusions

In conclusion, we demonstrated the application of
Association Plots, a method for visualization of
associations of genes to cell clusters in single-cell
transcriptomics data. We developed an R package
APL implementing this concept. APL is freely
available and serves to identify and interactively
visualize cluster-specific genes. It allows to
annotate clusters to cell types using known
marker genes, or to generalize from known
marker genes to additional, novel ones. It is
integrated with Gene Ontology enrichment to
further support the annotation process.
Methods

3k PBMC data

The UMI count matrix (”Gene/ cell matrix (filtered)”) of peripheral
blood mononuclear cells (PBMCs) from a healthy donor2,3 was
downloaded on 02.08.2021 from https://support.10xge-
nomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
and analyzed according to the Seurat Guided Clustering Tutorial
available from https://satijalab.org/seurat/articles/pbmc3k_tuto-
rial.html. Below we present the steps of the conducted analysis.
Features detected in less than three cells were removed from the
data. Additionally, the cells for which less than 200 or more than
2,500 features were detected, as well as cells with expression of
mitochondrial genes higher than 5% of total counts, were also
removed from the data. The filtered data was then normalized
using a method ”LogNormalize” from Seurat 4.0 package5 and
linearly transformed using its ”ScaleData” function. Subse-
quently, PCAwas performed on thematrix of the 2,000most vari-
able genes and the first 10 PCs were selected for constructing K-
nearest neighbor graph. Next, cells were clustered using the Lou-
vain algorithm (resolution parameter of 0.2) and the UMAP visu-

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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alization was generated using the first 10 PCs. Tomatch the clus-
ters to known cell types the expression of canonical markers was
investigated (Supplementary Figure 1). Finally, correspondence
analysis was applied to the normalized UMI count matrix using
all 13,713 genes. For generating the Association Plots, the first
223 CA dimensions (number obtained using the “elbow rule”)
were considered.

Analysis of the human cell atlas of fetal gene
expression data

A processed data set with normalized counts from all cells
(“Human_RNA_processed.loom”) was downloaded on
01.15.2021 from https://descartes.brotmanbaty.org/bbi/human-
gene-expression-during-development/.4 The normalized counts
were obtained using the protocol described in the publication.4

Correspondence analysis was applied to the normalized count
matrix using all genes across 12,106 cells from the stomach
clusters. The Association Plots for each of the 16 stomach cell
types were generated using the first 4047 CA dimensions as
determined by the elbow rule.

R package

The R package APL is available from the GitHub repository at
https://github.com/VingronLab/APL. The package requires the
R program, which is freely available from CRAN at http://cran.r-
project.org. For using APL we highly recommend installing
pytorch because it provides a fast implementation of the
singular value decomposition. For more details on package
installation and usage please refer to the vignette available on
GitHub.

Methods for choosing a number of dimensions

To facilitate the choice of an reasonable number of dimensions
from input data to retain in the analysis three methods from the
literature were implemented in APL:

1. elbow rule: the number of dimensions to retain is computed
from scree plots of randomized data, and corresponds to a
point in the scree plot where the original singular values
enter the band of randomized singular values,28

2. 80% rule: a minimal number of first dimensions which in total
explain above 80% of the total inertia are retained,29

3. average rule: only those dimensions which account for more
inertia than one dimension on average are retained.29

In the examples presented in this manuscript the number of
dimensions to retain was selected using the elbow rule.

Gene set enrichment analysis

The gene set enrichment analysis of the PBMC cell clusters was
conducted using the Molecular Signatures Database (MSigDB)
v7.28 together with the GSEA method6,7 available from http://
www.gsea-msigdb.org/gsea/msigdb/annotate.jsp. The analysis
was run using the default parameters and all available MSigDB
gene sets. The results were sorted according to the size of the
overlap between the input gene set and the gene sets from the
MsigDB collection.

GO enrichment analysis

The GO enrichment test of lymphoid cells from the stomach
cluster from human cell atlas of fetal gene expression was
conducted using the topGO package. For this purpose the
following parameters were used: algorithm = elim,
16
statistic = fisher, ontology = BP, mapping = org.Hs.eg.db. A set
of 358 genes with Sa score above 1 from the Association Plot
for lymphoid cells vs other cells from cluster stomach was
tested against a gene universe consisting of the remaining
genes from the Association Plot. The GO results were sorted
afterwards according to Fisher’s exact test p-values and the 10
most significantly enriched GO terms were shown in Figure 8.
Differential expression testing tools

To investigate the agreement among results obtained with
Association Plots, DESeq2,22 edgeR,23,24 and Seurat 4.0,5 we
applied them to each cell type from the 3k PBMC data. The gene
rankings from each tool were computed in the following way.
For DESeq2,22 the analysis was performed by combining
DESeq2 package with the zinbwave function from ZINB-WaVE
package,25 as recommended in the DESeq2 vignette from
10/27/2020 for single-cell analysis. For this purpose we applied
DESeq2 to zimbwave-weighted count matrix using test=”LRT”
for significance testing, and the following DESeq arguments:
useT = TRUE, minmu = 1e-6, and minReplicatesForReplace =
Inf. Finally, the genes were sorted by p-value in increasing order
and the genes with non-positive log2 fold-change values were
removed from the analysis.
For edgeR,23,24 the differential expression analysis for each clus-
ter was also performed using the observational weights com-
puted by zinbwave function. We followed the zinbwave vignette
from 10/28/2020. The genes were then sorted by p-values in
an increasing order, and genes with non-positive log2 fold-
change values were discarded.
For Seurat,5 the gene rankings were computed for each cluster
separately using the FindAllMarkers function with the parame-
ters: only.pos = FALSE, min.pct = 0, logfc.threshold = 0, return.
thresh = 1.01. The genes were then sorted by p-value in increas-
ing order and the genes with non-negative log2 fold-change val-
ues were removed from the analysis.
For Association Plots, genes were ranked by Sa in decreasing
order.
To generate the heatmaps from Figure 6 1,000 top genes from
each gene ranking were extracted, and the size of the gene
overlaps between the rankings was computed.
To generate the Association Plots for the dendritic cells from
Figure 7, from each gene ranking we selected 250 genes with
the lowest p-values, which passed a log2 fold-change threshold
of: 1.9 (DESeq2), 0.5 (Seurat), 1 (edgeR), and highlighted
them in the Association Plots.
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